Lecture 16: Introduction to Error-correcting Codes

Basic Definitions

Definition (Hamming Distance)

The Hamming distance between two strings $x, y \in \Sigma^{n}$, denoted by $\Delta(x, y)$, is the number of positions $i \in[n]$ such that $x_{i} \neq y_{i}$ Relative Hamming distance between x, y is represented by $\delta(x, y):=\Delta(x, y) / n$.

Definition (Hamming Weight)

The Hamming weight of a strings $x \in \Sigma^{n}$, denoted by $\operatorname{wt}(x)$, is the number of non-zero symbols in x.

- Note that $\Delta(x, y)=\mathrm{wt}(x-y)$
- Hamming ball of radius r around x is the set

$$
\left\{y: y \in \Sigma^{n}, \Delta(x, y) \leqslant r\right\}
$$

Basic Definitions

Definition (Error-correcting Code)

An error-correcting code C is a subset of Σ^{n}

- If $|\Sigma|=q$, then the code C is called q-ary code
- The block-size of code C is n
- Encoding map is a mapping of the set of messages \mathcal{M} to C

Rate and Dimension

Definition (Rate of a code)

The rate of a code is defined:

$$
R(C):=\frac{\log |C|}{n \log |\Sigma|}
$$

- The dimension of a code is defined to be $\log |C| / \log |\Sigma|$

Distance

Definition (Distance)

The distance of a code C is:

$$
\Delta(C):=\min _{\substack{c_{1}, c_{2} \in C \\ c_{1} \neq c_{2}}} \Delta\left(c_{1}, c_{2}\right)
$$

- The relative distance of a code is $\delta(C)=\Delta(C) / n$

Examples

- Repetition code repeats every input bit t times. It has block-size n, dimension n / t and distance t.
- Parity-check code appends the parity of $(n-1)$ bits at the end. It has block-size n, dimension $(n-1)$ and distance 2.
- Hamming code encodes 4 bits $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ as $\left(x_{1}, x_{2}, x_{3}, x_{4}, a, b, c\right)$, where $a=x_{2}+x_{3}+x_{4}$, $b=x_{1}+x_{3}+x_{4}$ and $c=x_{1}+x_{2}+x_{4}$. It has block-size 7 , dimension 4 and distance 3 .

Error-correction and Error-detection

Lemma

The following statements are equivalent:

- C has minimum distance $2 t+1$
- C can detect $2 t$ symbol erasures
- C can correct $2 t$ symbol erasures
- C can correct t symbol errors

Definition (Linear Code)

If Σ is a field and $C \subseteq \Sigma^{n}$ is a subspace of Σ^{n} then C is a linear code

- If C has dimension k, then there exists codewords $\left\{c_{1}, \ldots, c_{k}\right\} \subseteq C$ such that any codeword $c \in C$ can be written as linear combination of $\left\{c_{1}, \ldots, c_{k}\right\}$
- Every codeword can be written as $x \cdot G$, where

$$
x=\left(x_{1}, \ldots, x_{k}\right) \in \Sigma^{k} \text { and } G=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right) \in \Sigma^{k \times n}
$$

- G is called the generator matrix of C
- The mapping $x \mapsto x G$ is an encoding map
- A q-ary binary linear code with block length n, with dimension k and distance d is represented by $[n, k, d]_{q}$

Examples

- Parity-check code is an $[n, n-1,2]_{2}$ code
- Repetition code is an $[n, n / t, t]_{2}$ code
- Hamming code is an $[7,4,3]_{2}$ code

Think: Their generator matrix?

Definition (Systematic Form)

If $G \equiv\left[I \mid G^{\prime}\right], G$ is said to be in the systematic form

Parity Check Matrices

Lemma

C is an $[n, k]_{q}$ code if and only if there exists a matrix $H \in \mathbb{F}_{q}^{(n-k) \times n}$ of full row rank such that

$$
C=\left\{c: c \in \mathbb{F}_{q}^{n}, H c=0\right\}
$$

- H is called the parity check matrix for C

Lemma

$\Delta(C)$ equals the minimum number of columns of H that are linearly dependent.

Lemma

If $G=\left[I \mid G^{\prime}\right]$ is in systematic form, then $H=\left[G^{\prime \top} \mid I\right]$ is the parity check matrix.

Example

For Hamming code, we have

$$
\begin{aligned}
G & =\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \\
H & =\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- H has all non-zero binary strings of length 3 as its columns

Correcting One Error with Hamming code

- Let c be the transmitted codeword
- Let e_{i} be the error introduced
- Received codeword is $\widetilde{c}=c+e_{i}$
- Note that $H \widetilde{c}=H c+H e_{i}=H_{i}$
- So, we can find the position where error has occurred and it can be removed

Definition (Syndrome)

$H y$ is the syndrome of y

Generalized Hamming code

- Let $H \in \mathbb{F}_{q}^{r \times\left(2^{r}-1\right)}$ such that the i-th column is the binary representation of i, for $i \in\left[2^{r}-1\right]$
- Define C using the parity check matrix

Lemma

C is an $\left[2^{r}-1,2^{r}-r-1,3\right]$ code

